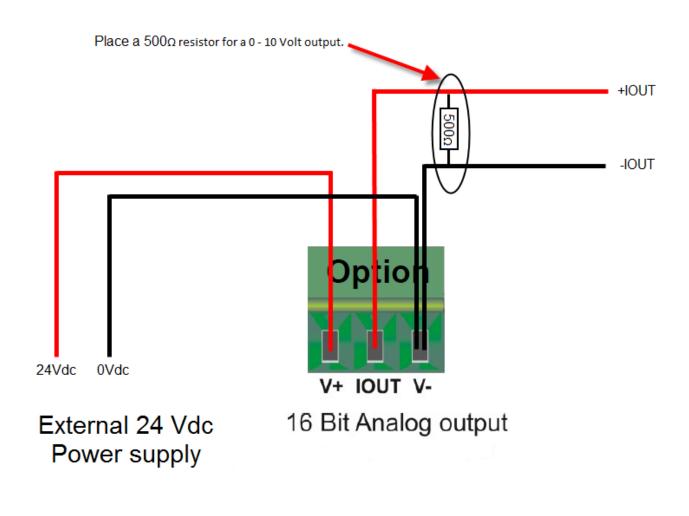
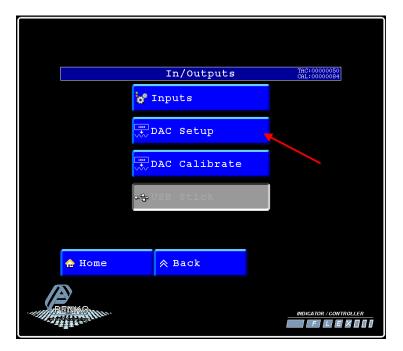
PENKO Engineering B.V.

Your Partner for Fully Engineered Factory Solutions



How to... Calibrate the analog output on a FLEX 2100


The analog output is an option for the 2100 and is an passive output.

In normal configuration the 2100 will give out a mA signal but it is also possible to have a Volt output. This can be done by placing a resistor of 500Ω parallel between IOUT and V–. If the **Range** is set to 0 – 20 mA the output will be 0,45 – 10 Volt.

Go to Menu → System Setup → In/Output → DAC Setup.

Set the **Extended Register** (register 0 – 100) and **Mode** to you desired settings.

Ana	log Output	Setup	TAC:00000001 CAL:00000002
Extended Regi	ster	0	€DIT
Mode		0-20mA	+
Slot 3	Channel :	1	
🗙 Cancel		V Ok	
RENKQ			INDICATOR / CONTRO

PENKO How to... Calibrate the analog output on a FLEX 2100

Mode	Description
RAW	16 bit DAC value. For a custom calibration (controller
	version only)
0 – 20 mA	The minimum and maximum output of the analog output.
0 – 24 mA	The minimum and maximum output of the analog output.
4 – 20 mA	The minimum and maximum output of the analog output.
4 – 24 mA	The minimum and maximum output of the analog output.

(
	Analog (output Se	tup TAC:	00000050
Extende	ed Register		15	EDIT
Mode	-	- 4-	-20mA	+
X Cano	el		🗸 Ok	
RENKOM	8.			ATOR / CONTROLLER

In the example above the **Extended Register** is set to Register 15 and the **Mode** is 4 – 20mA.

PENKO How to... Calibrate the analog output on a FLEX 2100

Open **Pi Mach II** and go to **Indicator & Registers**. Now you can fill in the value of the ADC output at extended register 15. The value you fill in is in percentage(0% = 0 and 100,00% = 10000). In the example below 5000 (50,00%) is filled in, the analog output will give out 12mA.

If the mode is set to RAV	V, fill in the 16 bit ADC value ((0% = 0 and 100% is 65535).
---------------------------	-----------------------------------	-----------------------------

Flex II, Devi			-	2480026, N	lodule Vers	sion: 03.	19, Build: 01, Pro	oject: C:\Us	ers\mrossum\Desktop\Tes	st∖
si On-Line	1			Program Buil	der 🥵 Fle	x Builder	🔲 <u>W</u> atches	🛃 E <u>x</u> it		
<u>D</u> isplay	Control			dicator & Registers 🙅 Labels 🚆 Results				C		
-								1		
Indicato	rs	Value		^	\sim		Ext.Regis	ters	Value	•
1		0	.00				1		1013498703	
2		156	.54				2		1800318737	-
3		0	.00	_			3		-119029131	
4		NOT AV.	AIL	_			4		2078804833	-
5		NOT AV.	AIL				5		1013498703	_
6		NOT AV.	AIL				6		1800318737	_
7		NOT AV.	AIL				7		-119029131	
8		NOT AV.	AIL				8		2078804833	
9		NOT AV.	AIL				9		1013498703	
10		NOT AV.	AIL				10		1800318737	
11		NOT AV.	AIL				11 Tare x	:10	0	
12		NOT AV.	AIL				12 Tare		0	
13		NOT AV.	AIL				13 Net		0	
14		NOT AV.	AIL				14		0	
15		NOT AV.	AIL			<	15 DAC ou	ıt	5000	
16		NOT AV.	AIL				16		1604848481	
17		NOT AV.	AIL				17		1013498703	
18		NOT AV.	AIL				18		1800318737	

About PENKO

Our design expertise include systems for manufacturing plants, bulk weighing, check weighing, force measuring and process control. For over 35 years, PENKO Engineering B.V. has been at the forefront of development and production of high-accuracy, high-speed weighing systems and our solutions continue to help cut costs, increase ROI and drive profits for some of the largest global brands, such as Cargill, Sara Lee, Heinz, Kraft Foods and Unilever to name but a few.

Whether you are looking for a simple stand-alone weighing system or a high-speed weighing and dosing controller for a complex automated production line, PENKO has a comprehensive range of standard solutions you can rely on.

Certifications

PENKO sets high standards for its products and product performance which are tested, certified and approved by independent expert and government organizations to ensure they meet – and even – exceed metrology industry guidelines. A library of testing certificates is available for reference on:

http://penko.com/nl/publications_certificates.html

PENKO Professional Services

PENKO is committed to ensuring every system is installed, tested, programmed, commissioned and operational to client specifications. Our engineers, at our weighing center in Ede, Netherlands, as well as our distributors around the world, strive to solve most weighing-system issues within the same day. On a monthly basis PENKO offers free training classes to anyone interested in exploring modern, high-speed weighing instruments and solutions. A schedule of training sessions is found on: www.penko.com/training

PENKO Alliances

PENKO's worldwide network: Australia, Belgium, Brazil, China, Denmark, Germany, Egypt, Finland, France, India, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Syria, Turkey, United Kingdom, South Africa, Slovakia Sweden, Switzerland and Singapore. A complete overview you will find on: www.penko.com/dealers

